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‘ 4 (1 - a?)? ; 0<carg g <

1
(n2 - a?)?

Y
1

; 0 < arg gn <m

The arguments of these variables are defined so that the electromagnetic
(1)

fields are bounded at infinity. In these expressions (X) represents

“0
the Hankel function of the first kind and of order zero, and n represents
the relative refractive index of region 2 compared to region 1, defined as
n? = k% /k2 = ez(l + ié)/c1 with 6 (loss tangent) given as 02/(052)

1
and 0 < arg n < /4 . Finally, n (“0/21)6 is the intrinsic impedance

:
of region 1. We note that the first and second terms in (2) are the direct
contributions due to the current filament and its image in region 2, respec-
tively. The integral in (2) and the magnetic potential given in (3) are due
to the finite conductivity of region 2.

With the use of the addition theorem of cylindrical functions, we there-

fore obtain the expression for the electric potential due to a uniform current

distributed on the surface of the j-th wire as

-n, I,

P 3 2.¢1) 2 2%
my = mfexpuklazwo(cajkl) € ek (eh )% (0 - d)?) 7]
2y (1) R e s Wy & 5
=CHy " T [k ((x o+ hj) (y dj) ) 1+ Plask, (x + hﬁ.kl(y djn
-Qosk, (x + hj).kl(y - dj)]} (4) !
where
5 o exp(—Xul - iYA) 7
Pla;X,¥) = +~ J dA )
im A u1 * Uz
202 - exp(-Xu1 - iY))
Q(G;X)Y) = '1—"—' J u. + nZu dx (6)

2 1
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and X = klx and Y = kly, are the normalized distances in the x,y directions.

If now we denote the average axial electric field on the k-th wire due to the

current on the j-th wire as “kj’ we obtain from (1) and (4), together with

the addition theorem of Bessel functions, the following expression: 0
-n,k.I.
e O i T 615, b i
ij = 4 oxp(lklu-)JO(CAj)JO(CAk){C H, [“((“j uk) +(nj Dk) Vg 3
; 1
-2 e ma% s 0, -D)%) ] ¢ PlasH, +H, D, -D.)
= 0 ey e f ST s NG S RS
= Q(a;uj +H, D -Dj)} (7)
where A. = k,a., H.=k h., and D. = k. d.. It'is worth noting that if
J 1 S J 1]

j =k, then (7) should be modified by replacing the first Hankel function
term in the curly bracket by Hél)(CAk)/JO(CAk) since the axial electric
field Ekk is uniformly distributed in this case.

Thus, within the framework of a thin-wire approximation, a modal
equation is found by setting the average axial electric field on the k-th
wire to be equal to the axial surface impedance times the total axial current
on the wire, i.e.,

m
jzlekj(a)=zk(a)1k for k=1,2,..,m (8)

If now we define

N = -4[nkj/1j-zj6ki]/(klnl)

kj (9)
so that [M] is a m x m matrix with elements Mkj’ we have from (8) and (9) .

the following matrix equation

[MJ[T] = 0O (10)
where [I] is the m x 1 column matrix with elements lj. Thus in order for
this to have a non-trivial solution (i.e. some Iij), the determinant of [M]

must be zero, therefore the resulting modal equation is

M(a) = det [M] = 0 (11)
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III. PROPAGATION MODES ON A DUAL-LINE

In the special ~ase of two identical bare wires of equal height (H1 =H2),
the modal equation can be factored to ohtain two solutions: the monofilar
one where I1 =1,, and the bifilar one where I1 = -I,. The two independent

modal equations are

0 =M () J(z)(cA){cz[Hél)(CA)/JO(I;A) -Hél)(CzH)] +P(a;2H,0)-Q(a;2H,0)}

I+

32 en e m{? @) -w{Y er)] ep@impqeinm)  a2)

where
1

2%

A=A =A,, H=H =H D=|D-D2|, R=[(2H)2+Dl

1

We note that the Bessel function JO(CA) is only important in the behavior
of M(a) for large ¢ . For the purpose of finding the roots of M(a),
the term JO(KA) may be approximated by unity under the thin wire assumption
that A << 1.

The method we adopt in this report to find the zeros of Mi(a) is an
iterative scheme similar to the well-known Newton's method. To use this method

the derivative of M(a) with respect to & is needed. This is given by
M) = {-20u{D @a)-u{D cam + acran{ @n) - 21{D camy)

+P'(a;2H,0) - Q'@;2H,0)

s {-za[Hél)(cD) -u(g”_(cn)] * a;[nuf‘)(co) -Rufl)[cn)l

+ pla;2H,0) - Q(a;2H,D)} (13)
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P |
P X,Y) = 22 a-:lf—l&zl-;ﬁ exp (-u,X - iAY)d) (14)

g - ) DS Sl
ok ? 2 az(u1+n2u2) exp(—ulx - iAY
Q' (%X,Y) = f= | [2u; -a%x- 5 ] 7 d) (15)
ML u2(u2+n ul) ul(u2 +n ul)

The (j+1)-th approximation to the root aj+l is then obtained from the

previous approximation aj using the equation

' .
G.j+1 = (Xj - Mi(aj)/Mi’(aj)’ (G 20) (16)

where % is an initial guess to the root, and the iteration is stopped when
]M(ai)l < g (where € is the desired accuracy of the root). Obviously the
iteration converges only if the initial guess is close enough to the actual

root. The method used in this report to locate the roots is to find one for

a particular set of parameters (by trial and error or from previously known results
and then vary the parameters by shall increments, finding the root at each step
until the desired set of parameters is reached. At each step the initial guess

a. is the root of the previous set of parameters.

0
The integrals P and Q and their derivatives as given in (5), (6), (14),

and (15), in principle may be evaluated numerically, however it is more

efficient to find approximate expressions initially in order to avoid excessive

computation in the complex a-plane. In the following section, we shall discuss

various approximations valid for different ranges of parameters involved.




IV. APPROXIMATIONS FOR THE INTEGRALS

P(a;X,Y) and Q(a;X,Y)

Using methods similar to those employed by Olsen and Chang [20], the
integrals P and Q can be approximated in terms of known functions for
the common case where the wire height above the ground is greater than the
skin-depth of the ground, that is, [n| H>> 1. The integral P as given

, in (5) can be written as

0
'3 :
P(a;X,Y) = - N2, (Ul'uz)exP('le - iAY)dA (17)
o0
where
N = (nz_l)i; 0 <arg N m/4

In most cases, we expect the useful solutions to the modal equation
Mt(a) = 0 to be located near o = 1. This means that ¢ is small so the
integrand of (17) decays as exp(-X|A|) away from the point A = 0. The
major contribution to the integral is then from the region A * 0. We

therefore expand u, in a Taylor series about A =-0 to obtain

2

2 PR
L iA iA
u2_-1§n+-2?—+ 3 imae iy (18)
n SCn

This series converges only wheﬁ IAI <|cn|, however the integrand of (17)

will have decayed by the factor exp(-xlcnl) outside these limits. Therefore
2 an approximation based on the first few terms of (18) appears to be valid for

Iz;nl2 >> I;Iz and |;nlx >> 1. By using the first term of (18), we may

rewrite (17) as

]
P(a;X,Y) = —iif ([u1 ¢i;n]exp(-ulx -iAY)dA
inN® &
&
+ 22 f [-icn -u2]exp(-i1x - iAY)dA (19)
imN® e

= P(@X,Y) + €0
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Neglecting ¢, we obtain a first order approximation to P as

Pla:X . X)= Po(u;X,Y)

2 3 i ;
22 {[82/3X - 1Cn3/8X].[ [exp(-ulx -1AY)/ul]dA

imN « 0

Nt @Ry lic X/« o - ¥R

2
- ¢ mHul ery (20)
3
where R = (X2 + YZ) . In deriving (19) the following identity has been used.
(1) -1 ﬁn
”0 (zR) = (im) J [exp(-ulx -iAY)/ulldA (21)

An upper bound for the absolute error in this approximation is found in

Appendix A to be

4[2+26X + §2X% +_ 6%3/3)

5 nlNzcnlx3 or
where ; 2
N tO (Re ¢” < Q) .
: -‘\.\(Re 2 e 22 > 0) .
From this expression it is apparent that the error is small if
|n3|X3 >> 8/m and if |n3| >>463/(3n) . For example say n=5.3 + i.95
and Re z? < .04, then the error for h=.1\ is less than 9 xlo'3 and

for h=.5\ the error is less than 7 x10._5 . These error estimates are

conservative and as will be shown in a later section, the results obtained
using this approximation are generally much better than what is indicated by
the error bound. For the interested reader, we have also included in

Appendix A higher order approximations and their error estimates.
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Following a similar procedure, we now rearrange the integral Q as

20L.‘an ? u, -u /n2
Q(a;X,Y) = 3 J 55 exp(-ul X -iAY)dX (23)
im(n'-1) @ AT-A
P
where
- 2T R
A = (§°-1/n - O<arg A_<m
p(/) B A,
A-zi A
n=(n"+1) : 0 <argn < m/4 .

Since the integrand of (23) has a pair of poles at txp, it is more convenient

to expand u, around A = Ap instead of around A = 0, so that

2
~ 2
apd o AR i62-5%3
u, = ———— + ¥ 2 + : 4 S et (24)
Rl 7 6
2n 8n

Based upon (24), we may rewrite (23) as

20° n [u *i/'A‘ Mo it
Q(a;X,Y) = { f =3 exp(-u;X - iAY)d) + f —_— exp(-ulx-ixy)dx}
-}
P

1n(n -1) A -A e Xz - Az

= Q (a;%,Y) + €0 (25)
where
22 ~ exp(-u,X - ilY)
Q (@;%,Y) = 221 f ul-Wﬁ dx
im(n ' -1) e 1
- 2a2 = exp(-ulx - idY)
G- oefl ETRLLT
in(n ' -1) o uz-in /n

We note that the integrand of Qo contains a pair of poles at X = & Ap,

whereas the integrand of er does not. According to Olsen and Chang [20]
this pole will cause a singularity in Q where Ap =0 (i.e. at u2:=l -l/ﬁz).

Since ¢ is small compared to Q° and has a nonsingular integrand, we

Qo
may neglect it to obtain the first order approximation




R e e

i
i
!

Q@3X,Y) = Q (@;X,Y)
22 » (”exp(-u X-iAY)
2an ] o 1
= — [exp(-u X - iAY)/uJdA +i/n | ———F——7mc arl
inn-1) A : ! P
2.2 22
= —-—20‘4" Hél)(cR) B2 wa;x,Y) (26a)
(n'-1) m(n -1)n

where W(a;X,Y) can be written as

[exp(-X(u,-i/R))-1]

W(@;X,Y) = exp(-iX/n) {f x exp(-iAY)d
P ul(ul-i/n)

exp (-irY) a )

ul(ul-i/ﬁ)

+

exp (-iX/n){(W_(2;X,Y) + Wy (%)} (26b)

We note that the integrand of W, has a pair of branch cuts in the
complex A-plane due to the definition of u but does not have any poles.
According to Olsen and Chang [20] this results in a pair of branch cuts in the
a-plane due to the motion of the branch points of uy (at A = £ Z) crossing the
real axis in the A plane. The branch points in the «-plane are at o = + 1
and fhe cut is defined by those points where ¢ is a real number.

The integrand of Wy has, in addition, two poles at A = txp. Again we
know from the work of Olsen and Chang [20] that these poles can cause branch
cuts in the a-plane whenever they cross the real axis in the A-plane because
of the discontinuity in the residue calculation at txp. These branch cuts

2

3
in the a-plane are located at a = ¢+ (1-5"- llﬁz) where S is any real

number.
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An expression for WO(G;Y) is derived in Appendix B. One form of the

expression is
w . = = A " - v ’, .
0@;Y) (Z/Ap)cos (APY)[zn(c) 2n(1/n 1Ap)] ( Ap)51n(pr)
4 (1)
+ n/(Apn) j; 51n[Ap(Y-s)]H0 (zs)ds (27)

where the principal values of the logarithms are chosen. A series expansion

for the finite integral used above is given as

- T Jhas;
(iY/2) m§o —';!L [exp€ir V) - (-1) exp (i V)11, (cY) (28)

where Im(gY) is expressed in terms of known functions in equations (B.14),
(B.15), and (B.16).
An expressionfor Wx(a;x,Y) is found in Appendix C to be

X
W (@X,Y) = -in L exp(is/ﬁ)Hél)[;(szwz)%]ds (29)

A series representation of this integral can be shown to be

3 fm(C.Xz/Z o y2), 20

W (aX,Y) = ]
x m=0

= lm(iX/ﬁ) (30)

where f. and I- are again expressed in terms of known functions in
Appendix C. We note that such a series does not converge well when Y small
compared to X. In order to find an expression that is good in this region,
W(a;X,Y) can be rearranged as

" exp (-ulx)cos (AY)

W(o;X,Y) = dA (31)

~0o Ul (ul'llﬁ)
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An expression for (31) is found in Appendix D by expanding the cosine
term into a Taylor series, and integrating this series term by term. The

result is repeated here as

® 2m
W(a;X,Y) = cos(A_Y)W(a;X,0) - im ) Ll}ljh;——R (@;X) (32)
P m=1 (2m)1 "
where 3
W(a;X,0) = exp(—ix/ﬁ) { -im j exp(is/ﬁ)Hél)(cs)ds

0
+ (2/x )[en(T) -2n(1/n - i) )]},
P P
Explicit expressions for W(x;X,0) can be found in Appendix B and will not be
repeated here. The terms R, are expressed in terms of known functions in
(D.4), and a series expansion for the finite integral is given as
© .oAm
z !15122_.1_ I_(zX) (33)
m! m
m=0
where Im(cX) is again given in (B.14), (B.15), and (B.16). It should be
noted that the series in (32) converges only if Y <X, so in computing W

2, 2Y2, otherwise we use (27), (28), and (30) inserted

we use (32) if X
into (26b).

In the preceding approximations on the integral Q, it is assumed that
in summing each of the series enough terms can be included to obtain any
desired accuracy. As evident from (25), the term EQo is omitted in the

derivation. An upper bound for the error due to neglecting EQo is found

in Appendix E to be

H

2
4 | a'n (1 +8X)
len | < = (34)
Qo i _(n4—1)n2 X
where {0 (Re CZ <0,
§ =
Re D) ez .

.
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From this expression it is apparent that the error is small if
lnSIX >> 4/m  and lnsl >> 468/m. For example say n=5.3+i.95 and
Real 62 < .04, then the error for h=0.12 is less than 3 ><10-4 and for
h=0.51 the error is less than 6 xlO's. We also note that Q is of the
order 1/n2, so the relative error is of the order 1/n3. This error
estimate is again conservative and the results we obtain in the following
section will show that the error is usually less than indicated by these
estimates. Similar to the evaluation of P(a) we have also included in
Appendix E higher order approximations and their error estimates. It should
be noted the series for P and Q, generated by incldding the higher order

terms of u, are only asymptotic, so in general one does not necessarily

improve the accuracy by including more terms.

- g ot - r— e = R —e
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V. NUMERICAL RESULTS

We have developed a computer program to compute the roots of the dual-
line modal equation (12) using the first order approximations to the Sommerfeld
integrals P(2;X,Y) and Q(a;X,Y). To test the accuracy of these approxi-
mations we compared the values of the propagation constants found using the
first order approximations, to the values found using a numerical integration
of the Sommerfeld integrals. Typical results given in Table 1 show that the
accuracy of the approximations.is quite good (on the order of 10'4 or less),
even for the case of a poorly conducting earth with |n| :5;4 considered
here. It is assumed that subsequent values obtained using the approximate
modal equation are of the same order of accuracy as the values in Table 1.

In Fig. 2 the roots of the modal equation are plotted for several

values of the wire spacing d, with the wire height h = 0.2\, radius

a = .005X , and refractive index n = 5.3 + 10.95. As expected for large

spacings there are monofilar andbifilar modes with propagation constants
close to the values of the single wire modes. As the spacing is decreased
the attenuation of the '"quasi TEM" monofilar mode increased until the spacing
is approximately equal to the wire height. After this point the propagation
constant approaches that of a single wire of radius equal to the geometric
mean of a and d. This can be shown directly from the modal equation.

The "earth-attached" monofilar mode is relatively insensitive to the spacing
of the wires. The '""quasi TEM" bifilar mode is affected less by the earth

as the spacing decreases, because the fields are concentrated between the

two wires. It should be noted that the '"earth-attached'" monofilar mode

is less attenuated than the ''quasi TEM" bifilar mode for spacings larger than
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n=5.3+i0.95 l l
a=0.0051
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Fig. 2: Mode trajectories as a function of wire spacing (h =0.2A)
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Fig. 3: Mode trajectories as a function of wire spacing (h = 0.3})




T S —
~20-
0.04
n=5.3+i0.95 | | [
a=0.0035\
I h=0.15A
- 2 h=0.2\ BIFILAR
3 h=0.25x MODE
4 h =03\
0.03 - -
o
g 0.02 —
—
0.0l isd
e = i
BRANCH
CuT
0o
0.48 1.0l
Re a
ll | Fig. 4: Mode trajectories as a function of wire spacing for
| various wire heights
g
|
e T A S TR T T




o
0.04
n:=5.3+i095 | |
a=0.005x h=0.1)\
Il d=1.0X
2 d=0.3) 0.154
3 d=0.1x
0.03 — y
h=0.2X\ 0.1
MONOFILAR BIFILAR
MODE MODE
{
{ o
L)
Noay 1022
0.0l |— A
BRANCH MONOFILAR
'-C-I-J?——X MODE
O la 0.2
3 0.4
P %
0
0.98 0.99 .00 1.01
Re a
Fig. 5: Mode trajectories as a function of wire height for

various wire spacings
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the wire height; however for very small spacings the bifilar mode has the
B lower attenuation. The fourth mode, an "earth-attached" bifilar mode, can

exist for large wire spacings only. This mode disappears into the improper
Riemann sheet at spacings of 1.5 to 2.0 wavelengths for wire heights of 0.1
to 0.4 wavelengths. The disappearance of this mode is due to the cancelling
of the singular portions of Q(«;2H,0) and Q(a;2H,D) in the modal equation
(12). Note that it is possible for the 'earth-attached'" bifilar mode to have
a lower attenuation than the ''quasi TEM" bifilar mode.

Figure 3 shows a similar plot of the roots of the modal equation for a
height of h=0.3A. The movement of the monofilar mode is similar to that
of Fig. 2; however the bifilar mode which disappears and the one which
becomes TEM as the spacing is decreased seem to have been interchanged. This
indicates that there must be a degeneracy between the two bifilar modes at
some height between 0.15)\ and 0.3\

Figure 4 of the bifilar modes is a plot for several heights between
0.15X and 0.3) and for various wire spacings. This figure shows that the
degeneracy occurs at a wire height between 0.25X and 0.3)A and at a wire
spacing of about 2.5\ . This degeneracy makes it difficult to label the
modes as being either "earth-attached" or ''quasi TEM", because these modes
can be transformed continuously into each other by varying the spacing and
height of the wires.

Figure 5 is a plot of the modes for changing heights at several fixed
spacings, This shows that the bifilar mode that exists for small spacings

! is transformed into a TEM type mode as the height is increased. One set of
monofilar modes moves from the branch point at Opp = n/n to a =1 as the

height is increased. The other set of monofilar modes moves toward the branch

‘ point as the height is increased.
1
|
|
|
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VI. CONCLUSION

In this report, we have investigated the modes of propagation along a
two-wire line parallel to and above the surface of a finitely conducting
earth. Due to interaction between the two wires as well as between the
wires and the earth, the mode structure is more complex than that which
would be found in the case of a perfectly conducting ground - a single
monofilar and a single bifilar mode. Moreover, the existence of modal
degeneration, similar to that discovered in [1] for the single-wire line,
has been demonstrated.

Systematic analytic approximations have been derived for the Sommerfeld
integrals which enter into the modal equation, as well as rigorous error
bounds for them. These expressions allow a great savings in the computer

time required to numerically determine the modal propagation constants.
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APPENDIX A

In this Appendix the higher order terms of P are derived and error
bounds for these are found. An (M+l)th order approximation is obtained

by extracting the first M+l terms in the expansion of u, in (18) from u

@ 2
in (17). P can then be written as
M
P(a;X3Y) = kE Pk(a;X;Y) + €pM (A.1)
=0
where P0 is given in (20), and for k>0
2ig
o e n=2k e
Pk(a,x,Y) ro Cy Cka(a,X,Y) (A.2)
Nk!
and where
- 2y iy o3 g
b . (2) ( 7) =3) .. .(2 k) (A.3)
and
Ik(a;X;Y) = (1n)_ Jﬂ Az exp(-ulx-ixY)dA
= (im)~ {[ 32/3Y 17 [-3/03X] j~[exp( u, X- iXY)/u 1dr}
= (=020 axoP )T D px +y2)"1} (A.4)

with the use of the identity given in (21). In particular, for the

2-terms expansion

P (a X;Y) = (i/N g, ) {(zX/R )H(l)\CR) [6Y -2%°- LZYZRZI + (c X /R )H(I)(cR)[x -3y 1}
(A.S)
Combining (A.5) and (19) we obtain the following expression for P(a;X;Y):
f P(a3;X;Y) = { iL H(l)(rR)[X -Y +1c XR2 PR S (6Y zxz—czYZRZ)]
| N R zc R
| 2
* -3V x+ —5 o - DD (A.6)
R 2c R
4
ke
!
T < 0 2 TS, g e e
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An error bound to the first order approximation to P(®;X;Y) can

be obtained as follows:

o
2
IEPOI |;‘7 L (-uy-1Z Jexp (-ulx-iAY)dAI

= 2
4 A
< i exp [-X Re(u,)]dA (A.7)
"‘NZ‘ { Tu2 1cnl 1
Let
0 [Re(z?) < 0],
5 = (A.8)
(Re 5%  [Re@d) > 01,
then it can be shown that
0 <9,
Re(u)) = Re(?-gD >
3 R
(P o B
fow PNV 3% 2§ 4 3 u . Se b fellows thet
0 (A <§),
Re(u,) >
b _{A-G (A > 8. $8.5)

Now u, and -i  are in the same quadrant for all real values of ) ,

so iuz-icnl > Icnl . Using these relations, (A.7) becomes

3

) b d {

led 5—-—‘5‘——[ [ 2o [Azexp[-X(A-G)]d)\‘\
mlN Cn' <o 0 /

4[2426% + 82%% + 6%%%/3)
|m%e_|x°

(A.10)

Similarly the error in the second order approximation to P(a;X;Y) is




IO R  ——————— .
=28
-y T 0 |
|€ = (-u, =iz + =—)exp(-u X-iAY)dA
Pl iTer © ¢ m 2Cn i
- 4
< 42 [ A 5 exp (-XRe ul) dA
m|N°] o [2¢ (u,-ig )°| 1
) | M - n
§ $
{f Adar + j A 4exp [-X(A-8) 1d)} .
JN C
2[24+246x+125x +46x +6x +5x/5]
(A.11)

nlN r,nlx

By comparing (A.10) with (A.11) , one can see that the error in P

is decreased by adding the second term if |n2|x2 i B
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APPENDIX B

In this Appendix an expression for Wocl;Y) is derived. wo(a;Y) as
given in (26) can be manipulated as follows

o

: exp (-iAY)dA
v - f SR

=00

./p exp (-iAyY)dx i/ 52!-1 Y2
B “f
-AP 1“ -A)

= Wol(a;Y) + i/ Woz(a;Y) (B.1)

ol(Q;Y) is found by deforming the contour into the lower half plane and

evaluating the residue to obtain

iy} w L

P

where O<arg A_<w . On the other hand we can rearrange WOZ to obtain
1 ' iy )dA idy)dA
-iAY')d exp (-1AY
W (G'Y)’_{ ..ﬂ%___%— 5 f ﬂi__.;._}
7 iy 2 o N7
02™ Ap S A Ap J ul(A Ap

= o {1, Gy) - Ty(an)} (8.3)
P

The integral I1 can be written as

Hexp[-iy (A= )]-1) o a
I, (wy) = CXP('MPY){L u O-3) » d) ’i’“u ZA-Api 2

Y
= exp(-iAY){ -i£9xp(i"\p) f—ﬂ"——ldkd *A f _'—u 0228
208 "
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Y
1, @) = exp(-id ){n [exp(ish )H{") (zs)ds + A f 2 (B.4)
A & po te 8 072"
1 P
Similarly I2 can be written as
Y Lo e}
I@,Y) = exp(ir Y){r [exp(-ish JH!) (zs)ds -2 f———:‘-"——} (B.5)
¥l e P u 0?0
/. o

By replacing these expressions for I1 and I2 into (B.3), we obtain

Y
Wyp (@3Y) = (n/i)\p)f sin[)\p(Y-s)]Hé”(t;s)ds
(o]

+ cos(ApY)Woz(a;O) (B.6)
where *
dx
W.,(a;0) = s
02 _[u (Az-)‘;)

An expression for Wy, (®,0) was found by Olsen and Chang [20] in
which the contour is deformed around the branch cut, and to this integration

was added the residue of the pole at Ap. The resulting expression is

woz(a;O) = (h/ixp){2[2n(c)-2n(1/a—1xp)] - i} (B.7)
The principal value of the logarithms are chosen. The substitution of
(B.2), (B.6), and (B.7) into (B.1) then yields

W @iy) = (ZIAP)cOI(APY) [&n(g) -&n(1/n -ilp)] - (n/Xp)sin(ApY)

+ '3(°‘Y) (B.8)

where Y
) = - (1)
MylasY) = (/2 R) /o sin[,(v-s) 4" (2s)ds (8.9)
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This can also be written as
w3(a;v) = (ﬂi/ZXpn){exp(—iApY)wa(c,Y,iAp)

- i Y)W, (g,Y,-i) )}
exp ( : ) 4(C p)

where Y

r
W4(C,Y.t) o] exp(ts)Ho(Cs)ds
o

(B.10)

(B.11)

This integral can be evaluated by expanding the exponential into a power

series and integrating the series term by term. The resulting expression

is
3 o (tY)mY
W, (,Y,t) mEO s il 05 2 4
where ;
1_(zy) = J# smﬂél)(CYs)ds
(o]

These integrals can be found from the recursion relation for m > 2

1.(1)

1,0 = @ H @ + @D e P @) - @nian?

1
Io and I1 can be expressed in closed form as

23 24N) (1) (1)
I (@) H (zY) + (w/Z)ISO(CY)H1 (zy) - SI(CY)HO (zY)]

Here S (x) is the Struve function of order j, and

3
L@ = @ w @y + 21/ o)

These results were obtained from Olsen and Chang ([20].

(B.12)

(B.13)

(3

(B.14)

(B.15)

(B.16)
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APPENDIX C

In this Appendix an expression for wx(a;X;Y) is derived. wx(a;X;Y)

as given in (26) can be written as

X o
wx(a;X;Y) = - j. exp (is/n) j. [exp(-sul-ikY)/uI] d\ds
o - 00
X
= -iT ]. exp(is/ﬁ)ﬂil) [C(32+Y2)%]ds (c.1)
o

In the case that Y = 0, this can be expressed as
W _(2;X;0) = -mwa(c,x,i/ﬁ)

where an expansion for W, is given in Appendix B, in equation (B.12) through

4
(B.16).
An expansion for wx is the region Y large compared to X is found as

follows. Consider the function f(0) defined by f(6) = Hél)(cek). This can

be expanded into a Taylor series around Bc as

o g )
£(0) = I m,c (e-ec)"‘ (C.2)
m=0 X

The derivatives of f with respect to 60, are given by the recursion formula

for m > 2
£[m] (o) = -O-II(IPI)é;-ﬂ(e) + (C2/4)Ji-zk9)]
where
£ = (-c/209u" (0%
Now, the substitution of 6 = ot 2 and 6 = X2/2 +v2 yields
uél) (2?7 - Eoi{_'_'ﬂ_zgiﬁ). (s%-x%/2) (c.3)
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By inserting (C.3) into (C.1) we have

® inly2,, .2
W (@;X,Y) = -im ] fEJQi:CéilL—l ™1y Gix/m) (C.4)
X n=0 m: m
where
1
1(t) = l:(52—1/2)mexp(ts)ds (C.s)

The integrals Im(t) can be expressed in terms of known functions through

the use of the recursion formula for m>2

f, I.(t) = c'l{z'm[exp(t) w1y - (zm/t)lzl'mexp(c)]
: - (m-DI_ (1) -(m-l)Im_z(t)]} (C.6)
with
I,(t) = [exp(t) - 1]/t
I, (t) = {exp(t) - (2/t)[exp(t) -Io(t)]}/t -1 (t)/2

However for large m and small t this method leads to a large
amount of roundoff error because of the large number of cancellations. A
better method for calculating Im for large m and small t is to expand

the exponential into a Taylor series around zero to obtain

@ k
5 (t)
I(t) = kzl oy Km’k €.7)
where 1
Sl s g m k
Km,k = Ji)(s -1/2) s ds

which can be computed from the recursion formula for m>1
2™ - mK

m-1,k
Km.k " Tkelm+1 g )




o

with

Ko,k = 1/(k+1)

We note that Im(t) is not a function of a or Y, so these can be
computed once for finding several roots with constant n and X.
We also note that the series for wx given in (C.4) converges

similarly to the series 2

o x2 m
L 2 2
m=0 \ X~ + 2Y

This series converges for all Y > 0, even though the rate of convergence

decreases for small Y.
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APPENDIX D

In this Appendix an expression for W(a;X;Y) is found that is good
in the region Y smaller than X. The cosine term in (31) is expanded
into a power series of Y, and this series is integrated term by term

to obtain

oo 2m
-1
W(a;X;Y) = I i*?%2%7~ I (a3X) (D.1)
i) m)! m
where
(o] 2m
A exp(—ulX)
i L—IT;*TT“ .
= 15%/3%%42%1™ W(asX,0)
where

fnexp(-ulx)

W(o;X,0) = ’mm dA

An expression for W(a;X,0) is found by setting Y = 0 in (27) and

(29), and inserting these into (26) to obtain

X
W(a;X,0) = exp(-iX/n){-im [ exp(is/ﬁ)Hél)(Z;s)ds
o
+ (2/Ap)[zn(c) - ln(llﬁ—iAp)]} (D.2)

A series expansion for the finite integral above is given in Appendix

B, in equations (B.11l) through (B.16). Let Im be written as
2
I_(0;X%) = Ame(a,x,O) - TR (a3X) (D.3)

A recursion relation for Rm is found to be for m > 1




Ex6
g .
R (a;X) = (Ap + LR (X)) + £ (a5X) (D.4)
where
£ (%) = [92®/9x*™) [3/3% - i/ﬁ]Hél)(cx)
and

Ro(a;x) =0

Inserting (D.3) into (D.1l) one obtains

] 2m
T ; 4 " "
W(a;X;Y) COS(APY)W(Q,X,O) im mil om) ! Rm(a,X) (D.5)

We note that for small X the function fm is asymptotic to
m . 2m, . (1) . :
(~-1) (2m)'/ (X )Hl (zX). This implies that the series in (D.5) converges

similarly to the series

T Gt
oy (2w (2a-T)

This series converges if and only if Y < X, so we can infer that the series

in (D.5) converges in the region Y <X.
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APPENDIX E

In this Appendix higher order terms in the approximation of Q will
be derived and error bounds for the first few terms will be found. As
with P an (M+l)th order approximation to Q is found by extracting the

first M+l terms in the expansion of u, in (24) from u_, in (23). Q is

2 2

then written as

M

Q(a3X,Y) = I Ok(a;X.Y) i

(E.1)
k=0 QM

where Qk is the portion due to the kth term in the expansion of u,- Q

is given in (25), and for k > 0

-21a2n20k a
Q(@x) = ——% () 1 @xn) (E.2)

(n -1)fik!

where

= &l 3 3
C = QENED. - o

5~ k)

and i3

L@xn = @t 0%  ep v

/\-2

o N R I e Tt

[-9/09X] ]‘(exp(-ulx—ikY)/ulldA}

= {[92/3X2+ﬁ-2]k_lCX(XZ+Y2)_%Hi1)[C(X2+Y2)%]}

In particular, Qlis found to be
]

2A
Q, (3%,v) = TEELREX (D) gp) (E.3)
(n -1)n"R
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The error in approximating Q by Q0 is given by

31 ig? “’-inz/ﬁ-uz
leqo! = 31 f. exp (-u, X-1AY)dA|

IRV W T
p
2 © exp[-XRe(u,)]
i%] 2 [ et M | (E.4)
(n'-1) ** |u,~in“/n|

2

1f Im(az) < Im(nz). then both u, and —inz/ﬁ are in the fourth quadrant

2
: " 2.,
in the complex plane. This implies that qu—inzlnl > In"/8| . Using the
bounds on Re(ul) given in Appendix A, the error bound on Qo becomes
9
IE i _zi| a n I (1+8X)
i P (n‘.-l)n2 "

(E.5)

where 2
(Re 7 > 0),

I (R«Lz < 0).
Similarly the error in approximating Q by Q°+Q1 is bounded by
2, _on ? IAZ-AZ‘
|€Q | i;l—é—_—i f -"——2‘9-*2 exp[-XRe(ul)]dA (E.6)
1 (n'-1)n @ |u2-in /n|
Using the same inequalities used in obtaining (E.5), thgn (E.6)

reduces to

292 33 2.2
2 azﬁs [2428X+8 X" +6°X"/3 +|xp|x (6x+1)]

§ qull <= 5 (E.7)

(na—l)n6 4
By comparing (E.7) with(E.5) it is evident that the error is decreased

by including Q1 if Inzlxz >1.







